Computers which are capable of teaching themselves to predict premature death could greatly improve preventative healthcare in the future, suggests a new study by experts at the University of Nottingham.
The team of healthcare data scientists and doctors have developed and tested a system of computer-based ‘machine learning’ algorithms to predict the risk of early death due to chronic disease in a large middle-aged population.
They found this AI system was very accurate in its predictions and performed better than the current standard approach to prediction developed by human experts. The study is published by PLOS ONE in a special collections edition of “Machine Learning in Health and Biomedicine.”
The team used health data from just over half a million people aged between 40 and 69 recruited to the UK Biobank between 2006 and 2010 and followed up until 2016.
Leading the work, Assistant Professor of Epidemiology and Data Science, Dr Stephen Weng, said: “Preventative healthcare is a growing priority in the fight against serious diseases so we have been working for a number of years to improve the accuracy of computerised health risk assessment in the general population. Most applications focus on a single disease area but predicting death due to several different disease outcomes is highly complex, especially given environmental and individual factors that may affect them.
Read more at University of Nottingham