Imagine a scenario where crops, such as barley, rice and quinoa, are grown in near-desert conditions, in poor-quality soils or on otherwise barren, marginal lands. These staples, irrigated with brackish water, would produce enough nutritious food to feed the world’s population, even as it continues to grow in the future.

“Ever since I was a child, I’ve had a strong belief that we should leave the world in a better state than we found it,” said Mark Tester, Professor of Plant Science. “This is one of the reasons I’ve chosen this career. As a plant scientist, the most challenging, inspiring and powerful goal is to contribute to helping feed all the people on this Earth.”

Tester’s research has already charted a course towards achieving this goal. Originally from Australia, he has worked there and in the United Kingdom since graduating in the 1980s. Before he moved to KAUST in 2013, Tester designed and created the Plant Accelerator at the University of Adelaide in Australia. This unique facility allows scientists to grow and image thousands of plants, all at the same development stage, and monitor how subtle differences in environmental and genetic factors can affect their productivity and health.

Tester’s expertise spans a wide, cross-curricular spectrum, from plant physiology and cell biology to research projects that utilize the latest in plant genetics and genomics technologies. At KAUST he is leading research that aims to pinpoint key genes conferring salinity tolerance. The manipulation of these genes could transform the ability of specific crops to thrive in poor-quality soils or under saline conditions.

“My research team is currently focusing on three key areas,” said Tester. “Firstly, we aim to increase the salinity tolerance of common, hardy crops. For example, we recently identified key genetic loci responsible for increased salt tolerance in different strains of barley and rice12. Secondly, we aim to domesticate salt-tolerant plants so that they flourish and produce high yields even under extreme conditions. We recently reported on the first high-quality sequencing of the quinoa genome3; our results will help us to understand how the plant grows, matures and produces seeds, ultimately allowing us to create highly-productive, resilient quinoa plants.”

Complementing these two strands of research, Tester also hopes to facilitate crop irrigation with partially desalinated water. This could be via the desalination of seawater or by using brackish water from estuaries or underground aquifers.

Working closely with engineers, Tester hopes to find ways to lower the costs of desalination and create an economically viable, sustainable system. Tester hopes that this will allow for the use of the water which is currently off-limits; a crucial step forward for global agriculture.

“Much of the world’s food is currently produced under irrigation with fresh water,” noted Tester. “This is completely unsustainable, particularly given the extra challenges raised by climate change and the warming of the Earth. This reliance on irrigation is the sleeping giant in the room—a massive challenge facing humankind that we simply cannot ignore any longer. It is absolutely critical that we work out a way to resolve this.”

Read more: A bright future for sustainable agriculture | KAUST Discovery